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It is shown that an elementary particle of conventional field theory may, under certain conditions, lie on 
a Regge trajectory. These conditions are that the system contain a "nonsense" channel at the angular 
momentum of the particle and that the Born approximation scattering amplitude factor in a well-defined 
way. They are satisfied by a spin J fermion interacting through a conserved current with a spin one neutral 
boson. The particle in question is the fermion. 

1. INTRODUCTION 

T N early discussions of Regge poles it was assumed 
-•* that an "elementary particle" of renormalized 
Lagrangian field theory would not lie on a Regge 
trajectory. Instead it would correspond to a special 
term in scattering amplitudes describing scattering at 
its particular value of / (angular momentum) and 
would not agree with the analytic continuation of the 
scattering amplitude from large R e / . Such a term 
would contain a pole in the energy at the mass of the 
particle. 

The belief that there was a sharp distinction between 
field theory and the Regge ideas was based on experi
ence with field theories of scalar or pseudoscalar 
mesons interacting with spinor or scalar "nucleons." 
I t was pointed out by Gell-Mann and Goldberger1 that 
if one considers radiative corrections involving massive 
vector bosons the situation is quite different and that 
in fourth-order perturbation theory there is an indi
cation that those special terms in the scattering ampli
tude which in second order look like fixed singularities 
in the angular momentum plane (like £JO, say) in fact 
get turned into moving Regge trajectories. 

I t is of course well known that Regge poles occur in 
the description of manifestly composite systems, both 
in potential theory and in simple approximations to 
field theory. I t is a new and drastically different obser
vation that an "elementary particle," appearing in the 
Lagrangian of a specific field theory, lies on a Regge 
trajectory. 

We have found that a spin one-half elementary 
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particle when coupled to a massive vector boson 
through a conserved current does, in fact, lie on a 
Regge trajectory. The same thing does not happen for 
a spin zero particle coupled to vector bosons. This is 
an exceedingly striking result. Although we can see 
how such a distinction arises between theories we have 
no deep explanation at present. I t does show quite 
clearly at least two things: Not all field theories are 
the same and, contrary to what is frequently said, 
spin is an essential complication. 

There are at present three principal approaches to 
relativistic quantum mechanics: axiomatic field theory, 
Lagrangian theory with Feynman diagrams, and dis
persion and unitarity relations. No one has yet made 
any convincing argument that these approaches contra
dict one another; nor has anyone been able to make 
satisfactory calculations with any of them in the case 
of strong coupling. In particular, the contribution of 
axiomatic field theory to calculations has been less than 
any preassigned positive number, however small. The 
method of dispersion relations, sometimes referred to 
in the popular literature as "S-matrix theory," does 
not provide a complete calculational framework. The 
analyticity and generalized unitarity principles that are 
to provide the foundation of a dispersion theory are 
obtained in practice from experimentation with Feyn
man diagrams. I t is a reasonable conjecture that these 
principles follow from the axioms of local field theory, 
which the Feynman diagrams formally obey. 

The study of Feynman diagrams is a particularly 
useful tool for exploring the properties of relativistic 
quantum mechanics, since a direct appeal to the 
axioms has proved so difficult and tedious and since 
the "S-matrix theory" suffers from the disease of not 
yet existing. (One must admit, of course, that the sum 
of all the Feynman diagrams in a particular field 
theory may suffer from the disease of being wrong, 
even if it exists.) 

A major new idea is the "bootstrap" hypothesis of 
Chew and collaborators, according to which all the 
strongly interacting particles are composite systems 
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made up of one another, with dynamicably calculable 
ratios and coupling constants. This hypothesis has 
usually been stated in terms of dispersion theory, in 
the incomplete version now available. It is not clear, 
however, that the bootstrap idea is necessarily tied to 
that particular formulation of relativistic quantum 
mechanics. 

It has also been suggested that the bootstrap hy
pothesis is equivalent to the statement that all strongly 
interacting particles lie on Regge trajectories. The fact 
that elementary particles in certain field theories are 
Reggeistic makes this equivalence unlikely (though 
not impossible) since it would demand that the boot
strap mechanism actually operate in some subtle way 
in conventional field theory to fix the coupling constant 
and mass ratio. 

Apart from the strong interactions, there is the 
problem of quantum electrodynamics, where the boot
strap idea has not so far been applied. It is very 
interesting that the field theory in which the spinor 
particle if Reggeistic resembles so closely the only field 
theory in which we have any confidence. Of course our 
work applies just to the case in which the photon mass 
is nonvanishing, and the situation in real quantum 
electrodynamics remains to be investigated. 

It is the purpose of the present paper and the suc
ceeding one to amplify a brief discussion of the necessary 
and sufficient conditions for the Reggeization of an 
"elementary particle" published recently.2 There it 
was shown that the critical feature of a particular 
theory was the presence or absence of a factoring 
property of the Born approximation and the presence 
of a "nonsense" channel (aside from certain questions 
involving subtractions in dispersion equations). We 
remarked that the factoring property obtained in a 
theory with spin one-half "nucleons" interacting with 
massive vector bosons, but failed for spin zero "nu
cleons." The latter point is treated in the following 
paper.3 All of our earlier considerations have been 
confined to a study of perturbation theory in which we 
examine and sum the largest asymptotic term in a 
scattering amplitude for each power of the coupling 
constant. We continue this approximate discussion, in 
which the Regge angular momentum is calculated up 
to the first order in the coupling constant. Our tra
jectory thus includes only two-particle intermediate 
state contributions. This limitation enables us to use 
two-particle unitarity for analytically continued partial 
wave amplitudes. 

The plan of the paper is as follows: In Sec. 2 a 
modification of the Jacob-Wick4 theory of scattering is 
given which is very useful in Reggeization of scattering 

2 M. Gell-Mann, M. L. Goldberger, F. E. Low, and F. Zacha-
riasen, Phys. Letters 4, 265 (1963) (hereinafter referred to as II). 

3 M. Gell-Mann, M. L. Goldberger, F. E. Low, V. Singh, and 
F. Zachariasen, Phys. Rev. 133, B161 (1964). 

4 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1954). 

amplitudes.5 It consists of using parity conserving 
helicity amplitudes and eliminates the d functions of 
Jacob and Wick in favor of Legendre functions. The 
general problem of Reggeization in the presence of spin 
is discussed in Sec. 3, and results for our special cases 
are given. In Appendix A general properties of the 
functions encountered in our formulation of scattering 
theory (definite combinations of Legendre functions) 
are given and a tabulation of all those encountered here 
and in any problem involving spins less than or equal 
to one. Details of the general Reggeization procedure 
are given in Appendix B where special attention is paid 
to the important concepts of "sense and nonsense" and 
compensating trajectories.6 A criticism of the latter 
notion by Berestetsky7 is disposed of at the same time. 
In Sec. 4 we treat the Compton scattering of massive 
vector bosons by spin one-half particles in Born 
approximation, showing the crucial factoring property 
and the appearance of a nonsense channel; the pre
diction of the answer to all orders is made on the 
basis of these results. The manner in which the unitarity 
and dispersion equations in the two-particle approxi
mation show the necessity and sufficiency of the 
factoring property is taken up in Sec. 5. Unanswered 
questions involving subtraction constants are considered 
in Sec. 6 where we treat the complete fourth-order 
amplitude and show that our conjecture is exactly 
valid to that order. In addition, we show how the 
expected ^th-order term may be extracted although we 
have not yet succeeded in eliminating all possible 
subtraction constants. The results are summarized in 
Sec. 7 and a number of theoretical implications and 
speculations are discussed. 

2. PARITY-CONSERVING HELICITY AMPLITUDES 

We treat collisions of the type a+b—> c+d, em
ploying for the most part the notation of Jacob and 
Wick.4 We note that on one of their helicity states, 
say \JM;\c^d), the parity operation P produces the 
effect 

P\JM)\c\d) = 7icTid{--iy-s*-s*\JM; -Xc-Xd>; (2.1) 

here X means helicity, S spin, and t\ intrinsic parity. 
We want to define eigenstates \JM\\^&)± of parity 
such that 

P | / i f ; X c X d ) ± - ± ( - l ) ^ | / M ; X c X d ) ± , (2.2) 

where v is \ for half-integral / and 0 for integral / . 
A given Regge trajectory will then belong either to + 

5 Essentially the same method has been developed independ
ently by F. Calogero, J. Charap, and E. Squires, Ann. Phys. (to 
be published). 

6 M. Gell-Mann, in Proceeding of the 1962 Annual International 
Conference on High-Energy Physics at CERN, edited by J. Prentki 
(CERN, Geneva, 1962). 

7 V. Berestetsky, Phys. Letters 3, 175 (1963). 
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or to — when parity is conserved. We may take8 

\JM;\^d)±^2-W\JM;\c\d) 

±2-^VcVd(-l)
s^s^\JM; - X . - A a ) . (2.3) 

Instead of the S matrix we use the F matrix defined 
by the relation 

Ffi= (Sfi-B/i) (2t)-1*F-1/2*r1/2, (2.4) 

where k refers to the center-of-mass momentum. When 
parity is conserved, F has no matrix elements between 
+ states and — states and the nonvanishing matrix 
elements are given by the formula 

FJ±*Ad; iaxb^±(JM;\c\d\F\JM;\akb)± 

= (JM;\c\d\F\JM;\a\b) 

±ycVd(-l)Sc+Sd-VM;-\c-\d\F\JM;\ah) 
= <XcXd|/^|XaX6> 

±VeVd(-l)s*8^'(-K-*d\FJ\\^b). (2.5) 

The scattering amplitudes of Jacob and Wick, for 
azimuthal angle <j> = 0, can be expressed as follows: 

/xcxd; XaX&(0) 

=V/2^r1/2E^(2/+i)(xcx,|^|xaxbyXMJW; 
(X = Xa—X&, /x=Xc—Xd). (2.6) 

We now define parity-conserving scattering ampli
tudes by the rule 

/±x.x* x „ x » ( * X ^ cos(e/2)]-^+"l 

± ( - l)WmVcVd(- 1)S«+S"-"[V2" sin(e/2)]-lx+"l 

X&2 cos(0/2):- '^ l /_x c ,_X d ; x.x,W, (2.7) 

where Xm= max( | X |, | ix | ) , 2= cos0. Correspondingly, we 
define new functions in place of the d's 

g x / ± ( s ) ^ 2 - 1 [ \ 2 cos(0/2)]HVM 
X [ v 2 s i n ( 0 / 2 ) ] H x - / ^ / ( 0 ) 

± ( - 1 ) ^ ^ - 1 ^ sin(^/2)]-lx+^ 
X[V2 cos(0/2)]-lx-/^X; -/(d). (2.8) 

Our final formula expressing scattering amplitudes in 
terms of F-matrix elements, with parity conservation, 
is then 

/±XcX,;X0X6=^/1/2^r1/2Z/(2/+l)Cex/+(2)F^Md;XoX6 

+ e x / - ( s ) ^ ± X e x d ; x 0 x J . (2.9) 

We see that /=*= has contributions from both FJ± and 
FjZp, but when we Reggeize in the next section and 
consider large 2, we will find that eJ+ always dominates 
eJ~ and the asymptotic behavior of /=*= is thus deter
mined by FJ±. 

To invert the partial wave expansion (2.9) we define 

2 c x / ± = [ V 2 cos(0/2)P+"i[v5 s i n ( 0 / 2 ) ; p - ^ x / 

± ( _ l )x+x*-ir^ sin(^/2)]lx+^ 

X[^cos(6 / /2 ) ] l x -^</x , - / . (2.10) 

We then obtain the inversion formula 

FJ±^U;^= 2-^rm^j <fe[<*/+(*)/±x.x,!x.x,(s) 

+cx/-(*)r^M(z)l- (2.H) 

The properties of the c's and e's are described in 
Appendix A. The e9s are given in terms of a simple 
linear operator applied to Pj±v, while the c's can be 
written as linear combinations of Legendre functions 
Pj~\m • • • Pj+\m with constant coefficients. We have 
tabulated the functions for non-negative X and fx up 
to 2, with general / . 

When X or JJL>J and J-\-v is integral, then that value 
of / is not reached physically and we refer to the 
channel as "nonsense" for the particular / under 
consideration. Otherwise the channel corresponds to 
"sense."6 

Let us now specialize to the case of elastic scattering 
of a vector particle by a spinor particle. We have 
Sa=Sc=l, Sb=Sd=l/2, 770=170=—1, Vb=Vd= + l, v 
= 1/2, ki=kf=k. We define 1=7-1/2. To avoid 
duplicating amplitudes f± and F±, we restrict their 
indices X& and \d to the value + 1 / 2 and we then 
supress those indices entirely, writing simply F\e\a

l(z) 
with X« and X c =—1, 0, and 1. For each parity there 
are thus six distinct elements of the symmetric matrix 
FK Since J is half-integral, the matrix elements of 
opposite parity are related by MacDowell's formula9 

FKxa
lHW)=-F*cX*(-W), (2.12) 

8 Note that, for both helicities equal to zero and rjcVd(—^)Sc+Sd 

= 1, the minus-state vanishes while the plus-state vector has 
length v2 instead of 1. The matrix elements F\c\d;\a\b

J± of Eq. 
(2.5) reflect this peculiarity, which must be taken into account 
in unitary equations when either pair of X's vanishes. For 
VcVd(—l)Sc+Sd=—l, the plus-state vanishes. 

where W is the total energy. Thus we need concern 
ourselves only with one sign of the i*"s, which we take 
to be + . 

The nucleon as an intermediate state represents a 
pole in the F+ matrix at / = 1/2 (or 1=0) and W=m. 

At / = 0 , the channels with \a or Xc=0, 1 are sensible 
while that with Xa or Xc= —1 is nonsensical. We let 
the Greek indices K, J>, etc., run over the sensible values 
0, 1. I t turns out that the partial wave expansions 
(2.9) for our problem can be written as follows, with 
the aid of the formulas in Appendix A: 

/ - w ± P * n " + s P n . i " ' + i Y " 
— — - = £ ^ i , - i z ± 

\ £ * 1(1+2) 

p-^'+zPr+Pi" 
- £ —P-i,-i1^, 2.13) 

i 1(1+2) 

* S. MacDowell, Phys. Rev. 116, 774 (1959). 
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/_i.,± Pi+t'T-i,,* Pi"F-i.,J* 
= L ( - l ) ' E , (2-14) 

\2 « p(/+2)]l'» ip(/+2)]v 
/ „ ± / > ^ = E P H . i ' e ^ « r , : t - E Pi'^FJ*, (2-15) 

: i 

where e „ = l unless K = 0 , J > = 1 , in which case ««,= — 1 . 
Similarly, the inversion formulas (2.11) for integral / 
become 

1 /-1 r / + l P w + 3 I P n . ! 
V2F_ 1 _ 1 '±=- / dz\ 

2 j _ j L 2Z+1 
/ - i , - ^ 

3 a + 2 ) p , + / p w 

J 
2H-3 

\ 5 F _ I , F ' ± i /-1 _ r-p«-i--Pn-i 

,-4 (2.16) 

D a + 2 ) j 1/2 -iL*[- 2H-1 
- / - i . ^ 

Pl — Pl+2 

2J+3 
(2.17) 

v2F *± 
1 r 1 

= - / dz[_PieVKfK} 

2 J-i 
• H P ^ / ^ ] . (2.18) 

3. REGGE POLE CONTRIBUTIONS 

Now let us consider what happens when we "Reg-
geize" the partial wave formulas. We treat the contri
bution of a moving pole in the / plane to the scattering 
amplitudes, when the partial wave sums are replaced 
by Sommerfeld-Watson integrals. 

In Appendix B we discuss the general question of 
Reggeizing in the presence of spin, particularly in 
connection with "sense" and "nonsense" and with twin 
trajectories. Here we merely apply the results to our 
problem of elastic vector-spinor scattering. We consider 
a moving pole in the Fl+ matrix elements near 1 = 0, 
with the idea of relating this trajectory to the nucleon. 
For the time being, for simplicity, we ignore exchange 
forces and signature. 

Let the position of the Regge pole be given by 
l=a(W). Then the partial wave amplitudes will have 
the form 

FKV
l+~rJK(W)Vv(W)/U-a(W)~], 

^ - i , ^ V P a + 2 ) ] 1 / 2 - f - i W ^ W / p - a ( ^ ) ] , (3.1) 

in the neighborhood of the pole. Here we have used the 
factorization property of the residues of Regge poles.10 

If the trajectory chooses sense a t a = 0, so as to produce 
a physical nucleon, then the amplitudes rjv approach 
finite numbers as a—-> 0. The amplitude f_i [a(a+2)] 1 ' 2 

for the nonsense channel vanishes like a112 as a —> 0, 

10 M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962); V. Gribov 
and I. Pomeranchuk, Phys. Rev. Letters 8, 343 (1962). 

so that f_i also approaches a finite number as a —•> 0. 
We have written F-i,v

+ divided by [7(7+2)]1/2 so as 
to treat a quantity without fixed branch points in the 
I plane at 1=0 and / = —2. 

If the trajectory were to choose nonsense at a = 0, 
then we would have, instead of (3.1), the relations 

FKV
l+~tJva(«+2)/(l-

F-i,-i»=Zr,-iJ/(l-a) 

*) , 
(3.2) 

with f and rj again approaching finite numbers as a —> 0. 
Returning to (3.1), we now examine the asymptotic 

form of the partial wave expansions [[(2.13)—(2.15)] at 
large z, Reggeizing as in Appendix B. We obtain the 
results 

/_ i ,_ i+ -> iV«r-iV(sin7ra)-1a2(a+1) ( - s ) " - 4 , 
/_ l i+-^^«r_177 j ;7r(sin7ra:)-1a(a+l)(-2)«-1 , (3.3) 

JKV+—> — N aeVKrjli7iv'ir(simra)-1(a+l) (—z)a, 

where i \^ a -V22«+ 1 r (a+3/2) [ v
/ 7rr (a+2)] - 1 . Near a 

= 0, the sense-sense amplitudes fKV
+ go like (—z)° at 

large z, while the others go like (—z)~l. In fact we 
have, as a —•» 0, z —* °° , 

J KV 

x'az 

(3.4) 
• v 2 eVKrjK7jya 

In terms of the quantities occurring here, we may 
rewrite the expressions (3.1) for the partial wave 
amplitudes near the pole a —» 0. Using the fact that 
a(l—a)-1—> — SQI as a—> 0, we obtain for the pole 
contributions near a= 0 the following: 

FKV
l+~ — (VKVVU 1 ) ^ O Z , 

F _ 1 ) / V P a + 2 ) ] 1 / 2 - f _ i ^ - 1 , 
F_1 ,_1+-2(f_1

2a)/~1 , 
(3.5) 

where y^yor1 goes like a~l near a=0, f_ i^s tays finite, 
and f_i2a vanishes like a. 

For general I, the definitions of F\e\^ are not, of 
course, exactly the same as the inversion formulas 
[(2.16)-(2.18)], which are valid for physical /. Instead, 
we must normally employ the Froissart definition, 
which coincides with (2.16)—(2.18) at physical /. For 
the Froissart definition, each / is replaced by its weight 
function w in a dispersion relation in z, each Pn is 
replaced by 2QW, and the integration over z is over the 
region in which w^0. Keeping only the terms that are 
important for / ~ a = 0 , we obtain 

VZFK1?+** \dzQi(z)eVKwK+(z), 

y/2F-i,,'+/U(t+2)Jii~ I^w(*)«/_i,+(*), (3.6) 

v2F_i,_i*+« fdz2Ql-.1(z)w_lt-.1+(z). 
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In an approximation in which a is treated as very 
small, the last two of these equations can lead to the 
results of Eq. (3.5), since Qi-i has a pole in / at /=0. 
We must not, however, expect to pick up the Kronecker 
delta for FKV

l+ from the Froissart definition in this 
limiting approximation. Instead, we see from (3.4) 
that fKV

+ has a term in z° as a —»0, with no weight 
function, and the Kronecker delta will show up in the 
ordinary inversion formula (2.18). 

In an exact treatment, the Froissart definitions are 
all right, if they are used at large Re/ and analytically 
continued, and they should lead to the formulas (3.1) 

fr kt„ 

FIG. 1. Born approxima
tion diagram for Compton 
scattering. 

2.M 

y 
\ \ \ 

ktt/t 

kltv 

where p = pi+ki, q=p\—k^ y is the coupling constant 
and the gauges 

for the behavior of FXoXe
+ near the Regge pole. We Tll=yli~-(y-k2klfl/kvk2) ,Tv=yv--(y'kik2V/kvk2) (4.6) 

have mentioned the approximation of very small a 
because it corresponds to the Born approximation in 
field theory, which we discuss in the next two sections. 

4. CALCULATION OF SECOND ORDER AND 
FORMULATION OF nth ORDER 

We consider the interaction through a conserved 
current of a spin 1/2 fermion of mass m (which we call 
the nucleon) with a spin 1 boson of mass X (which we 
call the photon). The initial and final four-momenta 
of the nucleon are p\ and p2, respectively, and those 
of the photon are ki and fo. The nucleon energy is 
called JS, and that of the photon co. Boldface p and k 
stand for three vectors. Solid lines in Feynman dia
grams represent nucleons, dotted lines photons and 
wavy lines spinless mesons. We employ 7*s and a 
metric such that the Dirac equation is iyp-\-m=0 and 
such that ^2+m2=0. 

The Compton scattering Feynman amplitude M and 
the conventional scattering amplitude / are given by 

/ = (m/AirW)M, M= ugttl^Ux^eiv (4.1) 

where uu=l and e\ and €2 are the initial and final 
photon polarization four vectors, normalized to unity. 
We have ei&i= €2^2=0. W is the total cm. energy. 
The conservation of current, expressed by the equations 

(4.2) 

(4.3) 

then allows us to ignore temporal components of the 
e's and modify the longitudinal components accordingly. 

Equations (4.2) and (4.3) also permit us to change 
the gauge of external photons according to the rule 

-Aku (4.4) 

where the vector A is completely arbitrary. 
Our first step is to calculate the second-order Feyn

man amplitude for the process y+N —» y+N. The 
relevant diagrams are shown in Fig. 1. 

mr,=^Lir£i/(iy-p+tn)yr9 
+iTv(l/iyq+m)iTll2J (4.5) 

have been chosen for the initial and final photons, re
spectively. The point of this choice is that as cos0 —•> 00, 
all the matrix elements of T^ and TM —> constant, as do 
the anticommutators {T^yq}, where q is any momen
tum in the problem. Therefore, in this gauge, the crossed 
diagram contributes only to order 1/z compared with the 
uncrossed diagram. Since all our calculations will be 
asymptotic in z, we may thus restrict our attention to 
uncrossed diagrams. The simplification thus attained, 
although modest in second order, is enormous in fourth 
and higher orders. 

Following Jacob and Wick, we take the incident 
photon in the +z direction, and therefore the target 
nucleon in the —z direction in the cm. system. The 
final photon momentum is in the x—z plane, and makes 
an angle 0 with the z axis. 

The spinors describing the initial and final nucleons, 
respectively, are 

Uv 
• ( 

2k\bPl\ /fn+E\U2 

t+E/ 

and 

w+Ex1'2 
/ 2k\dpi\/l--2\dV'k2\ /m+JbV 

\ m+E/\2cos(e/2)/ \ 2m J 
(4.7) 

where \& and X̂  are the initial and final nucleon heli-
cities, respectively, and Xx is a spin state with ag—2\. 

The photon polarizations are given as follows (with 
temporal components of e's eliminated, as described 
above): 

A«=±l: ti=-\a(i+iKj)/^2, 

Xo=0: £i=fei\/co. 

X c = ± l : €2= —\c(t cos0— k sin0—iXJ)/V2, 

X c = 0 : £2=^2X/w. 

The scattering amplitudes may now be calculated 
in the high z limit. As in previous sections we specify 
states only by photon 1 telicity: thus f+\e\dt\a\h —> /+x,x0, 
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FIG. 2. Higher-
order ladder dia
grams which gener
ate the nucleon 
Regge pole. 

acts like —W. Therefore, if we want to multiply the 
asymptotic /+ by a function of Wy we can do that by 
placing the same function of — iyp between TM and T„. 

The behavior of higher order Feynman diagrams is 
now clear if the Regge pole behavior persists. We must 
have, to all orders, 

STL, ' y H T . K - z y ^ y ^ / i i y p + m ^ i r , , (4.10) 

etc. We find 

/ n + = -

/ o o + = -

72 E-\-m (E—m—ia)2 

V2 fyrWP 

y2 E+m 

W—m 

X2 

< ) • 

VliirW&W-m < ) • 

/0 1
+ = 

72 E-\-m \{E—m—o)) 

f-i-i+=-

V2 4TTV2JW 

72 E+m 

W—m 

~{W-m) 
v2 SwWk2 z 

72 E+m 

V2 4TTV21^2 

y2 E-\-m 
f_n+= {E—co — m) 

v2 SirWk2 z z \z2/ 

where we retain the highest power of In(—2) for each 
power of 72 and use just the second-order a. I t is this 
behavior that we must try to establish. 

One amendment is still in order. We show later that 
the leading terms come from the set of graphs shown 
in Fig. 2. These have alternately / cuts in even orders 
of 72 and u cuts in odd orders, whereas (—z)a has only 
t cuts in all orders.11 This necessitates the introduction 
of two trajectories, one of positive signature, equal to 
a, and the second of negative signature, equal to —a, 
so that {—z)a is replaced by 

(4.8) [(-z)a+za {-z)-«-z-

Comparing with Eq. (3.4), we see that the Born 
approximation at large z corresponds exactly to the 
contribution at large z of a Regge pole with a —•» 0 as 
72 —> 0. We discover that the leading term in a is of 
order 72 ; it is then clear that the leading terms in rj^2 

and f_i2 are of order yA and 1, respectively: 

S - i ^ v ^ r - i ^ ly2{E+m) (W-m)/STWk22112, 

{ 0 =a- 1 %={C7 2 (£+«») /8 i r l ^A a ] - |>V(^- -w) ]} 1 / 2 , 

{ i s t f - ^ p - {Zy2(E+m)/167rWk22 (4.9) 
•Z(E-m-u)2/W-ni~]yi2. 

The quantities £ give a very simple form to the 
expressions (3.5) for the partial wave amplitudes. We 
see that for a—*0 at W=m like W—m (that is, a 
physical nucleon lying on the Regge trajectory), the 
Born approximation formulas for the £'s have the right 
behavior, with £_i going like {W—m)112 and £0 and £1 
like {W-m)-1'2. 

If the Regge behavior persists in higher order, then 
the asymptotic forms of the /+ amplitudes will go as 
in Eq. (3.3). Keeping just the highest power of In{—z) 
for each power of 72, we find that each /+ is just multi
plied by {-z)"W = expZa{W) l n ( - * ) ] . 

I t can be shown that for the asymptotic / + amplitudes 
the Dirac matrix iyp occurring between FM and Tv 

= l+aln{-z)+-{\nz)2+- " 
2! 

which has its cuts appropriately placed. 

5. ANGULAR MOMENTUM BEHAVIOR 

The singularities in the partial wave amplitudes at 
/ = 0 in Born approximation should now be given by 
the approximation of Eq. (3.5), that is, small a and 
small /. In terms of the quantities £ defined and evalu
ated in lowest order in Eq. (4.9), we obtain 

z U - i * = ( * - i ) 2 ( i / 0 . 

(5.1) 

Alternatively, we may take the explicit forms of the 
amplitudes / in Born approximation and compute the 
singularities in the F+ at 1=0 using normal inversion 
formulas (2.18) for FKV and Froissart definitions (3.6) 
otherwise. The result is the same, and again we obtain 
the expressions (4.9) for the £?s. 

The appearance of the \/l terms is critical to the 
success of our program, and is characteristic of the 

11 In this paper we consider scattering in the 5 channel, where 
s is the square of the energy in the cm. system. Large js = cos# 
then corresponds to large /=— 2&2(1 — z), where k is the cm. 
momentum. The third Mandelstam variable is w = 2X2+2w2 — s—t. 
The present convention is different from that of I and II, in 
which the scattering was in the u channel, t was the momentum 
transfer, and s the crossed momentum transfer. The problem 
was treated m the u channel in I and II since for large t and ^ 
and finite negative u we were in the physical region in the s 
channel: high-energy and backward scattering. In the present 
paper our use of unitarity in the s channel requires us to use 
s> (w+X)2, so that we are in any case not in a physical region 
for z —> 00 . We have therefore reverted to the more usual notation. 
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existence of a "nonsense" channel, to wit the state we 
have called — 1: Xa= — 1 , \ & = l / 2 , M = / z = — 3 / 2 and 
therefore / = 1/2 unphysical, or nonsense. The iteration 
of l/l through unitarity and dispersion relations clearly 
can produce a sequence like 

1 a a2 1 

I I2 P l-a 

whereas the iteration of 5j0 produces nothing but 8IQ. 
The presence of such a nonsense channel is a conse
quence of the nonzero spin of the photon, and shows 
the necessity for introducing spin 1 particles into a 
field theory in which an "elementary" particle is to be 
transformed into a Regge pole. 

The 8 io terms come from channels which are physical 
(or sensible) at Z=0, and therefore have the nucleon 
pole at W—m. The effect of higher order corrections 
on these terms must be to replace 8w by —a/(I—a). 

The second crucial property for Reggeization is also 
evident from inspection of the coefficients of Szo, 1//1/2, 
and 1//, respectively, in the F's in Born approximation. 
I t is that they factorize into products of £'s, as in (5.1). 
We have no deep explanation for the factorization of 
the Born approximation. I t is an important and 
hitherto undiscovered property of conventional field 
theory which makes Regge pole behavior possible. I t 
is not true of all field theories that contain a nonsense 
channel; for example, it is not true for spin zero nucleons 
interacting with massive photons. At present we must 
consider it to be a remarkable accident, which selects 
the particular field theory we have been considering. 

To illustrate the mechanism for the generation of 
the Regge pole we consider as an example the case of 
scalar nucleon scattering with exchange of scalar 
mesons. The pole in question starts at /=•— 1 instead 
of / = 0 . The invariant scattering amplitude M is given 
in lowest order by 

M^gKtf-t) (5.2) 

or 

9TCi= Pl(z)M(s)z)dzy 

—> g 2 / [2^ 2 ( /+ l ) ]+ te rms regular at 1= -1. 

The unitarity equation is 

Im3ttz = (p/STW)\mi\2 

or 

Im(fWli)= (l/8wpW)\p2Wii\ . 

(5.3) 

The dispersion relation satisfied by ti^p2$Ki> neglecting 
inelasticity and left-hand cuts, is 

f l r ds' 

2(1+1) ir}J s'-s 

r as' 

J s'-s 
• Imti, (5.4) 

of which the power series solution is 

* i = -
2(H-1) I \ 16TT2 J p'W s ' - s 1+1/ 

or 

3 T C z = -

with 

= -1 + 

2p2(l-a) 

,2 r ds' 

16TT2 J p'W (s'-s) 
(5.5) 

In our case, the generation of the Regge pole near 
Z = 0 works in a very similar way. 

The unitarity equation for -F_i,_i is 

I m F . i , _ i = * E x | ^ - i , (5.6) 

In the neighborhood of Z=0, X=—1 contributes the 
most singular term. The ansatz 

F_i._i= £_!»/ / -« , (5.7) 

which is suggested by the Born approximation (5.1), 
is clearly consistent with the unitarity equation thus 
obtained, provided 

(E+m)(W-m) 
Ima=kU2 = y2 . (5.8) 

SwkW 

This agrees with the value for a found in Ref. 1 
(Erratum): 

a^y2l(W-m)/%Tr2J_(W+m)h-WI{], (5.9) 

where 

or 

and 

In= / dxxn/[rn2x+\2(l-x)-sx(l-%)~] (5.10) 

/ o = 

li

ds' 

im+X)> k'W (s'-s) 

Vt may also write 

(wy-
(W-m) 

= 7 2 
8TT2 J 

J (W+\)2&V 

: a as in Ref. 

r00 dW 

L+xk'W 
/ E'+m 

X 
\W-W-ie 

(s'-s) 

2: 

E' — m y 

W'+W+ie, 

(5.11) 

) • 

(5.12) 

Our argument shows that if our assumption for 
F_i,_i is correct in the ^th order of y2 it will be correct 
for the imaginary part in n+lst order of y2. Also, the 
form (5.6) for F_1(_i satisfies the usual analyticity 
requirements. However, the complete verification of 
its form depends on a precise knowledge of the nature 
of the subtractions in partial wave dispersion relations, 
which we have not as yet been able to obtain. Lacking 

file:///W-W-ie
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FIG. 3. Fourth-order Compton scattering diagrams. 

it, we have been forced to turn to experiment, i.e., 
fourth and higher order perturbation theory, which we 
describe in the next section. 

An identical calculation can be performed for F-iitx 

where JJL = 0 or 1. Again the dominant intermediate 
state is — 1 , so that the unitarity relation reads 

ImF_1(J --kF-t^F-!,* (5.13) 

which is satisfied by the new ansatz 

F - i i M = ^ i ^ / 2 / ( / - « ) (5.14) 

with real £M together with the old assumption for F-i-i. 
Finally, the approximate unitarity equation for F^ 

(ji, = 0, 1) is 
-i*F,,_i, (5.15) 

which is solved by setting 

(5.16) 

The agreement of our formulas for F_i,_i and F-i)fl 

with the calculated Born approximation does not 
depend on factorization, since the scale of F-itli at 
each energy is not determined by unitarity [Eq. (5.13)] 
and can be arbitrarily chosen to fit the lowest order of 
perturbation theory. Once £M has been chosen in this 
way, however, FM„ is determined in 4th and higher 
order, as shown by Eq. (5.15). The second-order limit 
in (5.15) is —£MMzo, which need not agree with the 
second-order calculation of a specific theory (e.g., scalar 
nucleons+vector mesons).3 As shown by Eq. (5.1), it 
does agree for the case treated in this article. 

Our cavalier treatment of left-hand cuts can be 
corrected by using the method of asymptotic unitarity 
for the / amplitudes, developed in the succeeding 

paper3 for the scalar-vector scattering. The unitarity 
arguments are presented there using / amplitudes at 
large z instead of amplitudes near 1=0. I t is still true? 

however, that in each order we must resort to a "meas
urement" of Feynman diagrams in order to show the 
absence of subtraction constants. 

6. FOURTH- AND nth-ORDER PERTURBATION THEORY 

In this section we carry out a direct "measurement" 
of the Compton amplitude in the limit of large cos0. In 
this way we compute a (W) directly and verify explicitly 
that at least to fourth order in y the assumptions about 
subtraction constants made in Sec. 5 are borne out. 
As a matter of fact we exhibit in arbitrary order 
precisely the term which corresponds to our complete 
prediction of the large cos0 amplitude given previously: 

( _ 2 ) a ( ~ iyv) 

9fH « yHTp— £T„+signature terms. (6.1) 

We begin by looking at fourth-order perturbation 
theory and expect according to the above formula to 
find a term proportional to ln(—s)~ln(— t), where 
(— t) is the square of the momentum transfer, — t 
= (pi—p2)2. There have been a number of papers on 
the subject of extracting the high-energy behavior of 
Feynman diagrams.12 Whereas we rely partly on this 
work it is instructive to consider the fourth-order 
problem explicitly if for no other reason than complete
ness. Actually, the more elaborate treatments have 
been confined to the somewhat simpler case of spinless 
particles whereas in our case spin considerations are 
crucial. 

For orientation and as a guide to the natural order 
of magnitude of the integrals we encounter, let us 
begin by writing down the result we would obtain for 
the diagram a\ of Fig. 3 if all the particles were spinless. 
This diagram contributes the leading term in ln(— t), 
even in the case of particles with spin, provided the 
gauge TM is used, since all other uncrossed diagrams 
are essentially independent of t, just as in the Born 
approximation. In such a case we have for the Feynman 
matrix element, called 3TCo, 

r dH 
3TC0= / 

J (2TT)4; [(px-

1 

-02+w2][#2-02+w2][^-/)2+w2]p2+x2] 

and with the standard parameterization and integration over / this becomes (recall p2=—s) 

dxi- • • dx±8(l — %\—x2—%$—%±) 

(6.2) 

3H0= - f 
6TT2 J 

- I 
167r2 J [ \2x4+ (tn2—s)xz— (pix1+p2x2+pxz)2']2 

dxv • - dxid(l—Xi—x2—x^—Xi) 

167T2 J [ \2#4+ (m2—s)xz+sx$2Jrin2(xi+x2)
2-\-(s+m2—\2)x5(xi+x2) — txix{]2 

(6.3) 

12 P. Federbush and M. Grisaru, Ann. Phys. 22, 263, 299 (1963); J. Polkinghorne, J. Math. Phys. (to be published); R. P. Feynman 
(unpublished); G. Tiktopoulos, Phys. Rev. 131, 2373 (1963). 
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The limit of interest in our work is large / and fixed 
finite s. I t is clear that the only range of the parameters 
xi and x2 which is important is # i ~ 0 , #2—0, otherwise 
9Tlo will surely go like 1/t2. We may therefore set x\ and 
x2 equal to zero everywhere in the integrand except in 
the term (— i)x\X2 and integrate Xi and x2 from zero 
to some small positive value. After an elementary 
calculation we find in the limit (—/)—» °°: 

167T2 Jo \2(l—x)+(tn2—s)x+sx2—i€ 

fc]-(M) 
The usual ie heretofore unwritten has been restored. 
The coefficient of In (—t)/(—t) is just what we called 
la in Sec. 5 and we recall that it has the dispersion 
representation 

1 1 r™ 1 - 1 
J 0 = / ds' 

16TT2 16TT2 J (m+X)» Vs'112 s'-s'-ie 

where k' is the center of mass momentum of two 

We introduce the Feynman parameters xtx2XsXi and 
make the displacement l—*l+r, r=piXr\-p2x2

JrpXz, 
I t is not difficult to show that the only term of 2ftZi 
that we need to keep is the explicit pvp2~t/2 together 
with the displacement Xzp in the middle term. The 
point is that all other ways of producing a t in the 
numerator (needed to cancel the natural 1/t occurring 
in 9TC0) inevitably involve an x\ or x2, which removes 
the logarithm and makes the term too small to be of 
interest here. There results, in the large z limit, 

+ * y - * / i > T , l n ( - f l , (6.7) 

where Jo and I\ are as defined in Sec. 5. 
The entire answer for the matrix element, including 

all terms through order 74 in the limit of large 2, is 
obtained by adding to 9flZi the Born approximation: 

M=y2iriill/(iyp+m2{l+(y2/S7r2)('-iy'p-m) 
XL(-iyp+m)Io+iypI{\ l n ( - 0 } * T , . (6.8) 

This is precisely of the predicted form (with no unex
pected appendages) namely, (to fourth order), 

2ai=7^rM[(-2)a(-i7-p)/(n^+^)]^r,, (6.9) 
where 

a(W)= (y2/Sw2)(W--m)l(W+m)Io--WI1]. (6.10) 

particles of mass m and X with total energy s'112. I t is 
perhaps worth noting that the mass m occurring in the 
last two formulas is that associated with the internal 
propagator, Z(p—/)2+w2]-1. In the large / limit the 
masses of the other propagators as well as the external 
masses disappear. We are now in a position to deal 
with the real problem. The matrix element associated 
with Fig. 3, #i (call it 9TCi) with all the correct factors is 

r dH 1 1 
9TCi=74 / Yx 

J (2TT)H12+\2 iy(p2-l)+m 
1 1 

X T , Tv - y x , (6.5) 
iy (p—l)+m iy (pi—l)+m 

where we recall that 

Vil—yll—y'k2kili/ki'k2, Ty=yv—ykik2v/ki*k2. 

Using the fact that SIZi is to be evaluated between 
u(p2) and u(pi) we see that y\£—iy (p2—/)+w] on 
the left may be written as \_—2ip2\-\-y\iyf\ and 
£— iy {pi— l)+nijY\ on the right becomes \_—2ipw 
+iyiy2~]. We find then for 3TZi the result 

The slight modifications caused by signature are 
discussed in connection with the sixth order, where 
they make their first appearance. 

This whole calculation is really very simple, but we 
would like to point out that, if one does not use our 
external gauge, it takes on a nightmarish quality. If 
one simply uses "good old gauge," where vertices are 
written as 7M and yvy from numerator spinology one 
gets powers of (cos0)2. As a result all diagrams which 
have t dependence (di, d2, d% and a4 of Fig. 3) must be 
added up in detail and terms like lnt/t2 must be re
ligiously kept. There then appear fantastic cancella
tions, ultimately leading to the result we obtained so 
easily. One particularly troublesome aspect of this 
straightforward approach is the cancellation of the 
[ln(—/)]2 term between d\ and d\ of Fig. 3 and the need 
for extracting the terms proportional to ln(—/) hiding 
under the leading power. We mention this because the 
same disease plagues us in our discussion of the higher 
orders. 

We turn now to the 6th and effectively wth-order 
contributions. Unfortunately our treatment of 6th 
order is still incomplete. Although we can isolate the 
expected contribution, the term proportional to 
[ ln(+2)] 2 [recall the alternation from order to order 
from ln(— t) to l n (+ / )3 , we have not shown the absence 
of other [ l n ( + t ) ] 2 terms without imaginary parts in s. 
The external gauge which was so useful in 4th order 

9Tli=7' 
/ • 

dH l-Hpsk+ym-tjrjL-iy (p-l)+m}rl-2ip^+iylyx} 

(2w)H [ ^ I - O 2 W ] [ ( 0 2 - O 2 + W 2 ] [ ( 0 - O 2 + W 2 ] [ Z 2 + X 2 ] 
(6.6) 



B1S4 C E L L - M A N N , G O L D B E R G E R , L O W , M A R X , A N D Z A C H A R I A S E N 

k2,M| 

P-ik 

P2-£2 

k 

i > 

P.-*, 

P2 

p-£, 

k,,z/ 

\ \ \ i 

i 
\ 

\ 

i \ \ FIG. 4. Relevant dia
grams for sixth-order 
Compton scattering. 

b, 

is not sufficient to isolate the one diagram of interest 
and at least a subset of the total 6th order graphs must 
be considered together. This will become clear in a 
moment. I t is of course true that in addition to the 
expected term which we anticipate being roughly of 
the form [a ln/]2/2 with the same a as previously 
determined, there will be one with a three-particle 
threshold proportional to ln(—/) which we do not 
discuss here although it is not too hard to compute. 
I t would lead to part of the Y4 contribution to a (—iy • p). 
(There are also Y4 terms with a two-particle threshold.) 
We are therefore going to confine our attention to the 
highest power of In/ for the given power yG, namely 
(In/)2. 

I t is evident that it is the diagram b\ of Fig. 4 which 
we expect to be the interesting one, since it is the only 
one with a repeated two-particle intermediate state. 
The role of the other two diagrams in Fig. 4 will be 
explained shortly. The same external gauge used 
previously will be taken for the external photon 
vertices. The matrix element becomes 

m/6) d% r d% 

" 7 J (2irYiJ (2v 
-y\-

(2ir)HJ (2w)H iy(p2-fa)+m 

x«v 

XTX-

iy(p—l2)-\-m iy(p—h—fa)+m 

1 1 

iy (p—h)+m iy (pi—li)+m 

1 1 
Xy, . (6.11) 

&2+X2) (tf+X*) 

In order to simplify the writing, for the time being we 
drop the factors and deal only with the numerator 
which results from rationalizing the fermion propa
gators ; call it 9li: 

9li = T x [ - * r (p2-h)+m']iril-iy {p-fa)+nf\ 

XyJL-iy (p-h-h)+ml[Y>£-iy- (p-h)+tn\ 

Xil\Z-iy (pi-h)+tnfY,. (6.12) 

The first step in the isolation of the desired term is to 

note as in the fourth-order case the relations 

yxl~iy- (p2-~k)+m2^l-2ip2x+y\iyl2], 

l-iy. (p1-l1)+m']y<r=l-2ipu+iyhyff']. 

We now retain only the terms (—2ip2\) and (—2ipu) 
as these are the ones with the greatest potential for 
producing an explicit factor of / in 3li. In fact these 
are the only relevant terms, but we leave it to the 
reader to convince himself of this. Then 9^ becomes 

9fli«-^4iTM[—*7- (p—^+m^ypil—iy (p—h—h) 
Jrm]yp<£—iy (p—h)+ni}iTv. (6.13) 

Next we move y-p2 to the left and ypi to the right so 
that they may ultimately act on the appropriate spinors 
to give (im). We make use of the fact that the only 
important components of h and fa are parallel to p in 
the limit of large /; components parallel to pi and p2 
will bring in Feynman parameters which will make the 
integral too small to be of interest. Further, only 
{yphyp2} is of significant size, since {ypi,y-p} 
= {yp2,yp} = — (s+m2—\2) and {ypi,yp2}~t/2. 
We are left with 

9 f l 1 « - 4 ( / / 2 ) i r M [ - f 7 - (p-h)+tn] 
Xl+iy (p-fa-fa)+m2L-iy (p-h)+nf\iTv, 

= - 4 ( * / 2 ) i r M [ - * r (p-h)+tn\ 
X[_-iy'p-m^-iy'{p-li)+m~\iYv (6.14) 
-4( / /2) i r ,C(p- / 2 ) 2 +M 2 ] [ -n- ( i>-«+^r , 

-Ht/2)iT£-iy- (p-fa)+mT(p-h)2+m2~liTv. 

The second form comes from writing 

[iy(p—h—fa)+m~] 
= [iy (p—fa)+m+iy {p—l^+m—iyp—nf]. 

The first term in this equation for 911 is, as we show 
in a moment, just what we want. The remaining two 
terms are unfortunately quite disgusting. They give 
rise to a large / dependence of the form /(In/)3. I t has 
been shown by P. Federbush that these terms are 
cancelled by the diagrams b2 and 63 of Fig. 4. In fact 
the result for 9TCi(6) implied by the first term in the 
above formula for 9li is the total answer in so far as 
the absorptive part of the amplitude in the s channel 
is concerned. The only remaining task in 6th order is 
to show that the sum of the (In/)2 terms which have 
constant or polynomial (in s) coefficients indeed cancel. 
This has not yet been completed. I t is unfortunate 
that the use of our external gauge, which even in 6th 
order serves to easily eliminate many diagrams, does 
not at the same time dispose of the (In/)3 terms just 
as (In/)2 terms disappeared in 4th order. We were 
unable to find any choice of gauge that would do the 
job. I t is the presence of these extraneous contributions 
(i.e., higher powers of In/) which makes it useless to 
write down an integral equation for the ladders of the 
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variety shown in Fig. 3, a\ and Fig. 4, bi, and solve for I t is now quite easy to see that the term we have 
the part of a which has the two particle cut, to all isolated in 6th order fits into the predicted pattern. 
orders of y2. Quite explicitly we have 

3TCi<6) 

where 

/t\ r d% r d% 

7 \ 2 / J (2TTW J (2T)H 

d% iT^—iy (p—l^+m^—iy-p—nij^—iy- (p—l^)-\-m}iYv 

D (6.15) 

£ = [ ( ^ 2 - / 2 ) 2 + m 2 J ( £ - ^ 

This integral can be discussed by the methods of 
Federbush and Grisaru12; except for the numerators 
they have actually done it. I t turns out that the 
factoring of the integral into a product obtains here 
also and one simply replaces the numerator l\ and h by 
their components parallel to p (times the appropriate 
Feynman integration parameter). The result is 

<M^=~ (y2/2)iTll(-iyp-ni){(y2/8<ir2) 

Xl(-iyp+tn)Io+iypIil}Hrv(lnt)2. (6.16) 

This is exactly what is predicted from the formula 

Wl= (y2/2)iTfl{l(-t)a(--i^+ 00«<-*y-p>] 
— [Y—A—a(—iy-p)— (j\—a(— iy-p)~\ 

Xtl/(iy-p+myyr9. (6.17) 

The formula now holds through order 76 subject to the 
previously mentioned qualifications. I t is perhaps worth 
remarking that the explicit appearance of the factor 
(—iyp—m) in 6th order is an entirely nontrivial 
miracle; we see in the following paper that the corre
sponding factor does not occur for a scalar target 
particle. I t is this factor which shows that the tra
jectory is passing through the elementary particle pole. 

I t should be quite apparent that the isolation of the 
term obtained by expanding the above formula to 
arbitrary order can be done exactly as we did for the 
6th order. Needless to say, the cancellation of unwanted 
powers of Int becomes more and more of a problem in 
higher orders. 

7. CONCLUSIONS 

We have examined the scattering of neutral vector 
mesons from spinor nucleons in perturbation theory, 
keeping the highest power of Ins in each order of the 
coupling constant y2. Except for checking that sub
traction constants vanish in sixth and higher orders, 
we have verified that the nucleon lies on a Regge 
trajectory in this approximation, with a(W) given by 
a power series in y2, of which we have calculated the 
first term. To carry the investigation that far, it was 
not necessary to go beyond elastic unitarity for the 
scattering. 

The crucial features of the theory that allow the 
nucleon to turn into a Regge pole as a result of radiative 

corrections are: 

(a) the existence of at least one "nonsense" channel 
at J=1/2 that couples to the "sense" channels 
in which the nucleon appears as an intermediate 
state; 

(b) the factoring of the Born approximation. 

We have shown above, as in I I , that these conditions 
are necessary and that apart from possible subtraction 
constants in higher order, they are sufficient in our 
approximation. 

In a field theory of just scalar or pseudoscalar 
mesons and spinor nucleons (or scalar mesons and 
scalar nucleons), the two-particle channels that com
municate with the nucleon do not include a nonsense 
channel at the angular momentum of the nucleon. The 
mathematical condition for the appearance of such a 
channel is that 

where / is the spin of the particle that is to lie on a 
trajectory and Si and s2 are the spins of the particles 
into which it dissociates. 

I t is, of course, possible that the particle may turn 
into a Regge pole as a result of dissociation into more 
than two particles, but if so we conjecture that the 
condition is 

7 ^ 1 + ^ 2 + ^ 3 — 2 , e t c . 

If that is right, then in the absence of vector mesons 
the nucleon, introduced as an "elementary" particle 
into a renormalized field theory, will not lie on a 
Regge trajectory. 

In I, the question was also raised of whether a scalar 
nucleon, coupled through a conserved current to a 
vector meson, would lie on a Regge trajectory. Here 
a two-particle nonsense channel is available, but the 
Born approximation does not factor. The details are 
given in the next paper, where it is shown that a 
Regge trajectory develops, but the scalar nucleon does 
not lie on it. (The interesting possibility is raised of 
mutilating the theory so that the Born approximation 
does factor; if the mutilated theory can be made finite, 
then the Regge trajectory does pass through the 
nucleon.3) 

The theory of spinor and vector particles (quantum 
electrodynamics with massive photons) thus seems to 
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have special virtues. It is possible, as mentioned in I, 
that the massive photon also lies on a trajectory when 
coupling to three-photon states is included, but that 
question is not yet settled. The same theory may also 
give rise to a Pomeranchuk trajectory (passing through 
7 = 1 at zero energy); this possibility was raised by 
Freund and Oehme13 and some of the present authors14 

have extended this work. It is certainly worthwhile to 
pay further attention to the vector-spinor field theory. 
We mention here some points that seem particularly 
interesting : 

(a) The limiting case of true quantum electrody
namics (X —» 0) should be studied. Here the individual 
scattering amplitudes actually vanish, because of 
possibility of radiating an infinite number of soft 
photons. One might, however, factor out of the two-
particle amplitudes the main X dependence, then allow 
X to approach zero, and finally consider large cos#. This 
type of double limit gives the physically interesting 
behavior at high energies in the crossed reaction; it is 
not the same as taking our results at large cos0 and 
then considering small X. 

(b) Possible applications of neutral vector meson 
theory to strong interactions cannot be excluded. There 
is, however, a difficulty if the resulting description of 
strongly interacting particles is to resemble the eight
fold way. If we introduce eight degenerate spin 1/2 
baryons coupled through the conserved baryon current 
to a neutral vector meson, the resulting theory is 
symmetrical under the group SU(8), with 63 generators. 
It is hard to see how to reduce the symmetry to SU(3) 
in a natural way without, for example, introducing a 
further octet of vector mesons described by a theory 
of the Yang-Mills type; such a theory does not seem 
to be renormalizable in the usual sense and we have 
no evidence that it is consistent with Regge pole 
behavior. Of course we can eventually introduce mass 
differences among the eight baryons and/or coupling 
of the original vector meson to the strangeness current 
as well as the baryon current, but such terms break 
the symmetry rather than reducing it from SU(S) to 
517(3). 

(c) Ignoring the difficulties we have just mentioned, 
we may speculate about the relation of neutral vector 
meson theory to a theory of strong interactions based 
on dispersion relations with only moving singularities 
in the / plane. Chew and Frautschi15 have raised the 
hope that in the absence of fixed singularities in J (for 
Re/>0) all coupling constants and mass ratios may 
be determined by the "bootstrap" mechanism. In our 
field theory it is possible that there are only moving 
singularities, but the coupling constant y2 and the 

13 P. Freund and R. Oehme, Phys. Rev. Letters 10, 199, 315 
(1963). 

14 M. Gell-Mann, M. L. Goldberger, and F. E. Low (to be 
published). 

15 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 8, 41 
(1962). 

mass ratio \/m are introduced arbitrarily. Is there some 
kind of consistency that determines their values? If 
not, and if Chew and Frautschi are right, then is there 
some experimental distinction between a Regge tra
jectory determined dynamically by a bootstrap and 
one that arises from an elementary particle of field 
theory? 

(d) If our mathematical nucleon has anything to do 
with real nucleons, there may be some importance to 
the trajectory of opposite signature which has, in 
second order, a value of a equal and opposite to that 
of the nucleon. Could this trajectory have any connec
tion with the "second resonance" around 1510 MeV, 
which is thought to have J=3/2~? 

(e) In our approximation, we have not treated low 
enough powers of Ins for a given order in y2 to encounter 
the Gribov phenomenon16 or the cuts in the angular 
momentum plane that Mandelstam has found and that 
are supposed to exclude Gribov's essential singularities 
from the physical sheet. It will be instructive to see 
how these things go in the vector-spinor field theory. 

(f) It is interesting that the Regge behavior of the 
nucleon in vector meson theory persists even if we 
study scattering by nucleons of scalar or pseudoscalar 
mesons, with these particles introduced only as external 
lines. In I (particularly the Erratum) this problem has 
been discussed, but we do not fully understand the 
meaning of the result. Mathematically, the basis is the 
factoring, in Born approximation, of all the scattering 
amplitudes with vector, scalar, and pseudoscalar 
mesons coming or going out. 

Finally, let us re-emphasize our belief that additional 
experiments in the laboratory of Feynman diagrams 
will be of great value to all students of relativistic 
quantum mechanics, including those who use the 
language of "5-matrix theory" and those who are 
investigating the consequences of the "axioms." 
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APPENDIX A 

Properties of e and c Functions 

We refer to a list of properties of dxM
J(0) given by 

Jacob and Wick4 in their Appendix A. Using our 
definitions (2.8) and (2.10) we find the corresponding 
relations for e\fi

J±(z) and c\pJ±(z). 
16 V. Gribov, in Proceedings of the 1962 Annual International 

Conference on High-Energy Physics at CERN, edited by J. Prentki 
(CERN, Geneva, 1962). 
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The functions need be given only for positive sub- e\/ and c\/. Let us consider positive indices only. 
scripts in a particular order. We may then find eJ± and When /z^ X we obtain 
cJ± for other values of the subscripts from the relations 

e_„,_x'±(Z) = e x / ± ( 2 ) , (Al) 

^ x ' r ± ( z ) = ( - l ) x ^ x / ± ( 2 ) ) (A2) 

cx,SHz) = ± ( - l ) x + W x / ± ( Z ) , (A3) 

with corresponding formulas for the c's. 

[X m =max( |X | , | / x | ) ] . 

Under 6 —> T— 6, we have z —> — z and we find 

e x / ± ( - z ) = ± ( - l ) J - x ' » e x / ± ( 2 ) (A4) 

and likewise for the c's. In fact, if we define 

e x / ( z ) = e x / + ( 2 ) + e x / - ( 2 ) = [v2cos(0/2)]-l*+"l 

ex „+i J= C( /+M+1) (J-ix)J'*Dex/, (A7) 

where D means d/dz. For /x<X, we find 

^ + I J = [ ( / + H - D ( / - M ) ] 1 / 2 

X [ ( l - z ) Z H - y u - X > x / . (A8) 

Using (A2), we can now derive an exact general 
expression for integral / and non-negative X, fi 

ex/= ( - 1) X [ ( /~X) ! ( / - M ) ! / ( /+X) !(/+/*) Q1/2 

XDl»-V(D2-D-zD2)mPj, (A9) 

where we have used the fact that e^J=Pj. Here 
w=min(X,/x). I t is clear that at large values of s, the 
larger of e\/+ and e\/~~ goes like D*mPj and transforms 

X[V2 sin(<9/2)]-"x-^4Mjr(<9), (A5) under *-> - 2 with a factor ( - l ) ' - x « ; thus it is e x / + 
that dominates. 

For half-integral / we find for positive X and M cx/(z)^cx/+(z)+cx/-(z) = \y2cos(d/2)T+lil 

X [ V 2 s i n ( 0 / 2 ) p - ^ x / ( 0 ) , (A6) 

then we may evaluate e^J± and c\fl
J± as the parts of 

e\/ and ex*/, respectively, that transform according 
to (A4) under z—>—z. The functions e\/(z) are 
proportional to the so-called Jacobi polynomials 

P ^ X - M . X + ^ S ) for X £ | M | . 

The recursion relations for JXMJ given by Jacob and 

ex/=(-l)*-W(J+l/2) 

X [ ( J - X ) ! ( / - M ) I / ( /+X) !(/+/*) Q1/2 

XD^-"(D2-D-zD2)™-li2e1/2 i / 2
J , (A10) 

with e 1 / 2 i / 2 ^ = 2 - 1 / 2 ( / + l / 2 ) - 1 ( P j + i / 2 , ~ P / - i / 2 / ) from 
Jacob and Wick. Again the + function dominates at 
large z. 

Using (A9) and (A 10) we generate the following list 
Wick are easily transformed into recursion relations for of e functions for non-negative X and /x up to 2: 

eoo" <r+= -PJ, 

-el0
J+=e01

J-=Pj'/ZJ(J+l)Jt\ 

e2o
J+= eo2J+=Pj"/L(J-1)/(/+1) (J+2)J12, 

enJ+=(Pj'+zPj")/J(J+l), 

2Pj"+zPj"f 

^22 J+=-

/(/+1)[(7-1)(/+2)]W 

2PJ"+4ZPJ'"+ (z2+l)P/" 

—eioJ~ 

e2oJ~~ 

en 

Coo/_ 

= e«iJ~ 

= e 0 2 / _ 

« 1 1 J " 

= euJ~ 

„ „J-

= 0. 

= 0 . 

= 0. 

= - P / ' / / ( / + l ) . 

- P / " 

7(/+l)[ ( / - l ) ( /+2)]^ 

- 4 P / " - 2 z P j i v 

-Cs/2 l / 2 " ' + = e i / 2 i/2J+ = 

( / - l ) / ( / + l ) ( / + 2 ) 

e1/21/2J+=(l/v2)CPi+1'/a+l)]I 

1 p*+l" 

^3/2 3/2' /+= 
v5 Z(7+l)(Z+2) 

— ^3/2 1/2J = 01/2 3/2 J = 

^3/2 3/2 — 

( / - l ) / ( / + l ) ( / + 2 ) 

«!/» ! / / -= ( -V^) [P» ' / ( /+ l ) ] . 

- 1 Pi' 

v2 (Z+l)p(Z+2)]1/2 

- l P ! + l ' " + 2 P ! " ' + P I " 

V2 Z(7+l)(H-2) 

Now let us discuss the calculation of c functions. By definition of ex,/ and ex,/ we have, of course, 

c x / = ( l + * ) I M - * i a - 2 ) | X - ' , | e x / 

(Al l ) 

(A12) 

and this formula provides a way of finding the c's from the e's; and the ± parts can be picked out by their behavior 
under z —> — z. I t is more convenient, however, to express ex/ as a linear combination, with constant coefficients, 
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of Legendre functions ranging from Pj-\m to Pj+\m. We start with CQOJ=PJ and a/21/2/== (I+2D01/2 i/2 J= (1/V2) 
X(Pi+Pi+i). 

We define the operators L, A+, and A__ by the relations LPn^nPn, A+P ns=P n + i , and A_P„=P n _i . Then the 
recursion relations of Jacob and Wick give, for non-negative X and fx, the results 

CX+1,X+1 

M^X: c\ifl+iJ = 

J= — 
1 f L+l L 

4 X ( X + 1 ) - L ( L + 1 ) - A + ( L - 2 X ) 2 - A _ ( L + l - 2 X ) 2 [ o o / , (A13) 
( / + X + l ) ( J r - A ) l 2L+1 2L+1 

1 

[ ( / + M + 1 ) ( / - M ) ] 1 / 2 

L ( L + 1 ) / L + l Z, 
(A_-A + ) 2X+2M( A+ hA_ 

2 L + 1 2 L + 1 2L+ i)k (A14) 

By using these formulas we can obtain all the c functions, step by step, in the desired form. We thus generate 
the following list, for non-negative X and JJ, up to 2 : 

cm
J+ = Pj. CooJ_=0. 

-cia
J+=CoS+=ZJ(J+l)Jli/2J+l(Pj-i-Pj+1), - C i o / - = C o i / = 0 . 

[ ( 7 - 1 ) 7 ( 7 + 1 ) ( 7 + 2 ) ] ^ 

( 2 7 - 1 ) (27+1) (27+3) 
- [ ( 2 7 + 3 ) P J _ 2 - 2 ( 2 7 + l ) P ^ + ( 2 7 - l ) P J + 2 ] ) 

C02 J =C20J = 0 . 

c i i J + = [ ( 7 + l ) P J _ 1 + 7 P J + 1 ] / ( 2 7 + l ) , Cxi ' -=P/ . 

[(7-1) (7+2)IP 

( 2 7 - 1 ) (27+1) (27+3) 
[ ( 7 + l ) ( 2 7 + 3 ) P / _ 2 - 3 ( 2 7 + l ) P / - 7 ( 2 7 - l ) P J + 2 ] , 

[ ( 7 - 1 ) ( 7 + 2 ) ] 1/2 

2 7 + 1 
- ( P j _ i - P j + 0 . 

( 7 + l ) ( 7 + 2 ) ( 2 7 + 3 ) P J _ 2 + 6 ( 7 - l ) ( 7 + 2 ) ( 2 7 + l ) P J + ( 7 - l ) 7 ( 2 7 - l ) P J + 2 

( 2 7 - 1 ) (27+1) (27+3) 

(A15) 

c i / 2 i / 2
J + = ( l / V 2 ) P ! , 

-Ca/2 l / 2 ' / + = C l , 2 3 / 2 / + = 

C3/2 3/2' /+ = -

p ( / + 2 ) ] 1 ' 2 P i _ i - P z + 1 

v2 2 /+1 

1 (l+2)Pl^1+3lPl+1 

"63/2 1/2' —Cl/2 3/2 — 

2 ( / + 2 ) P , _ i + 2 ( / - l ) P / + 1 
£ 2 2 J = • 

2J+1 

Cl/2 1/2J~=(l/^2)Pl+l-

U(!+2)Ji2Pi-Pn-2 

V2 21+1 
C%I2 3/2 

v2 2J+3 

1 3(l+2)Pl+lPl+2 

v2 2J+3 

APPENDIX B 

Reggeizing, Sense and Nonsense, 
Compensating Trajectories 

We present here an expanded discussion of Regge-
ization in the presence of spin as treated in Ref. 6, 
with emphasis on sense and nonsense and on compen
sating trajectories, such as the P and Q trajectories.6 

The notion of compensating trajectories has been 
attacked by Berestetsky,7 but there is no basis for his 
criticisms, as can be seen below. 

For simplicity, we ignore exchange forces and signa
ture until the very end. In Reggeizing, we do not prove 
that the contribution of the large semicircular contour 

can be discarded as it recedes to infinity. (In our work 
on vector-spinor scattering in perturbation theory, the 
agreement between the asymptotic behavior of the / ' s 
and the behavior of the F's in the / plane shows that 
we do not have to worry about trouble from the large 
contour, at least to the right of /=0.17) 

A more serious simplication is our neglect of compli
cations arising from the third Mandelstam weight 
function, for example the Gribov phenomenon16 and 
the associated cuts in the I plane discussed by Mandle-
stam.18 We ignore cuts and essential singularities in 

17 We wish to thank Professor S. Coleman for this comment. 
18 S. Mandelstam (to be published).' 
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the / plane and assume the absence of fixed poles. 
That corresponds to the case of coupled Schrodinger 
equations or to field theory with the approximations 
used in this paper. 

Our discussion lacks rigor in one further respect. We 
use the Froissart definitions of the FJ for general J in 
terms of integrals of Q functions times the weight 
functions w of the / amplitudes; but these definitions 
are strictly correct only for sufficiently large R e / . At 
other values of J, they must be analytically continued. 
We treat these definitions, however, as if they applied 
at all values of J that we consider; our manipulations 
of these definitions must be regarded as heuristic. 

Let us now review Reggeization in the spinless case, 
using essentially the method of Mandelstam.19 We 
start with a partial wave expansion 

/ ( * ) = E (2J+l)Pj(z)F' 

and a Froissart inversion formula 

FJ= dzQj(z)w(z), 
' • / • 

(Bl) 

(B2) 

where w is the weight function of / in a dispersion 
relation in 2. We avoid fixed poles at the negative 
integers. (They are in fact absent for the Schrodinger 
equation, for example, although they seem to be there 
in the lowest Born approximation. When higher 
approximations are included, these singularities become 
moving poles.) In our heuristic language, that corre
sponds to setting 

/ 
dzPj(z)w(z) = 0, 7 = 0 , 1 , 2 , (B3) 

(at all but isolated values of the energy), since at the 
negative integers the general relation 

yields 

over all the integers if we write 

jr=>-)-oo 

/ ( « ) = E (2J+l)<?j(z)F'. 
J=~oo 

(B6) 

Now we convert to a contour integral, with contour 
enclosing the whole real axis, 

/ ( s )=— <f 
2-KU 

( 2 / + 1 ) 

SITLTJ 
<?j(-z)FJ. (B7) 

Actually (Pj has poles at the half-integers, but the 
residues cancel in the following way: the one at J 
= —1/2 is canceled by the factor 2 7 + 1 ; the others 
cancel in pairs J, —J—l of half-integers. From (B2) 
and (B4), we have 

pj=p-j-i9 j half-integral, (B8) 

while the residues of (2/+l)7r(sin7r/)~1(Pj(—z) at 
half-integral J and —J—l are equal and opposite. 

Now we expand the contour in (B7) to infinity, 
throwing away everything but the part at the far left. 
We assume for our present purposes that only moving 
poles are picked up. A pole in FJ of the form fi(J—a)~-1 

then gives a contribution to f(z) equal to 

- [ ( 2 a + l>/sin7ra:](PG; ( - z)P. (B9) 

<2/-<2-j-i=7r cotlirPj (B4) 

QJ~T coUirP-j-i. 

Now we use (B4) to express Pj in the form 

PJ(Z)=(?J(Z)+(?-J-1(Z), 

where 

6V= - Q-j-iir-1 t anJV=T ( / + 1/2)[T ( / + 1 ) ] " 1 ^ 1 / 2 

X (2z)JF(-J/2, 1 / 2 - J/2; 1 / 2 - 7 ; 1/s2) (B5) with 

as in Ref. 6. At J= 0, 1,2, • • •, we have (PJ=PJ, while 
at negative integral J we have (5V = 0 . Since FJ is finite 
at negative integral 7, we can extend the sum in (Bl) 

Suppose at a given energy a trajectory passes through 
a value a = Jo, with / 0 = 1/2, 3/2, • • •, etc. Then if the 
residue does not vanish at that point we see from 
(B8) that another trajectory a' must pass through 
—Jo—1 at the same energy, with the singularities 
related 

P/(Jo—a) = [fi'f (—Jo— 1— aOl+nonsingular terms. 
(BIO) 

The singularity in (B9), at the energy for which a=Jo, 
is thus compensated by an equal and opposite singu
larity arising from the primed trajectory passing 
through — Jo— 1 at the same energy. 

Now let us treat an example with spin, namely the 
case in which X = / i = l . We take cnJ± and euJ± from 
Appendix A. In general, we define C\/± in terms of 
c\nJ± by replacing P?s by Q's and we define E\/± in 
terms of e\pJ± by replacing P 's by (P's. We then obtain 

/ ± = f; (2J+1)(E11^FJ^+E11
J-FJ^), (B l l ) 

• / 

F ' ± = / dz(W±CiiT++WTCuJ-), (B12) 

(P/+z(Pj" -6>j" 
EuJ+= - , £ 1 1 ' - = , (B13) 

Cu'+-

j(j+i) J(J+i) 

(J+DQj-i+JQj+i 

19 S. Mandelstam, Ann. Phys. 19, 254 (1962). 2 / + 1 
, Cu'-=Qj. (B14) 
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We have used the fact that for / = 1, 2, 3, • • • we have 

Again we avoid fixed poles by putting 

[pnW±dz=0, » = 0 , 1, 2, • • • . (B15) 

For J =—2, —3, ••• we then have FJ± finite and 
EnJ±=0, so that the partial wave sum (Bl l ) can be 
extended to these values of / . For J=0 and — 1, 
however, both FJ± and EuJ± are finite and so it is not 
obvious that these values can be included in the sum. 
That is the point that bothered Berestetsky. We note 
that in this example J = 0 is the only "nonsense" value 
of J (in general, for integral X or ju we define a nonsense 
value to be a non-negative integer less than |X| or 
| /* | ) . The companion point in the J plane associated 
by reflection through / = —1/2 is the point / = — 1. 

Now we can easily verify that 

= fdzW^Qo-f—Pj} 1 + fdzW^Qo (B16) 

and that 
Eu0±=En(-^. (B17) 

Thus we can add the values J = 0 and / = — 1 to the 
partial wave sum; they cancel. 

We can now connect the partial wave sum 

/ ± = ZC(2J+l)(EuJ+FJ±+E11
J-FJ*) (B18) 

JW-oo 

to a contour integral. At half-integral values of J we 
have FJ±=F(~J~1):k (note the parity index is the same 
on both sides) and the residue of (2/+l)x(sin7rJ r)~lEiiJ '± 

cancels against the residue at —7—1 for the half-
integers. 

We can then expand the contour and pick up Regge 
pole contributions 

f^Z(2a±+l)/sin7ra±]E11^+(-z)^ 

- C ( 2 ^ + l ) / s i n 7 r a j £ 1 1
( a r F ) - ( - 2 ) ^ (B19) 

from trajectories a+ and a_ corresponding to poles in 
FJ+ and FJ~~\ respectively. Again we have compensation 
of trajectories at the half-integers, without change of 
parity index. 

A new type of compensation has now appeared, 
however, the kind discussed in Ref. 6 for the P and Q 
trajectories. Consider a trajectory a± passing through 
7 = 0 at a certain value of energy. If the trajectory 
chooses sense at 7 = 0 , then the residue /3± for X = l , 
At= 1, vanishes like a± as a±--» 0. No singularity then 
appears in (B19) as a^.—-> 0, which is entirely appro
priate for a nonsense value of a. If the trajectory 
chooses nonsense at J= 0, then the residue/3± approaches 
a finite constant as a± —> 0 in our nonsense «-» nonsense 
amplitude. The contribution to (B19) of the trajectory 
then does have a singularity at a ± = 0 , but this must 
be canceled by something, since the / ' s cannot have 
an actual singularity at a nonsensical value of a±. 

The cancellation occurs through the existence of a 
compensating trajectory a^ (with opposite parity index) 
that passes through J= — l at the same energy for 
which a± passes through 0. We can deduce the existence 
of the second trajectory from (B16) and moreover we 
conclude that 

j8± /a : t= [J&F/(— 1— aT)]+nonsingular terms, (B20) 

near a ± = 0 , a ^ = — 1. Using the relation (B17), we see 
immediately that the singularities in the Regge pole 
contributions (B19) do compensate each other. 

I t is interesting to remark that the leading term at 
large z in EuJ+, which goes like zJ~l

1 actually vanishes 
as J —> 0, so that the largest nonvanishing term in 
E n

0 + goes like 2 - 3 ; thus compensation by £n ( _ 1 ) ~, 
which goes like z~z at large 2, is possible. 

Our example is now easily generalized to any integral 
values of X and M- The values Jo of J [7o=0 , 1, 
• • •min([X|, |/z|) —1] for which we are dealing with a 
nonsense-nonsense transition compensate the corre
sponding terms with J= — J0— 1. The leading terms in 
E\/+ at large z vanish at J==JQ, down to a term of the 
right behavior to compensate ExM

(~Jo-1)"", and we have 

Ex/
0±=E^-jQ-w, /^o±=/7(-/or-i)=F (B21) 

for all relevant values of Jo. 
Finally we go to half-integral values of X and /x as in 

our problem of vector-spinor scattering. The only 
change is that compensation between all pairs of 
integral / now occurs with a change of parity index, 
while the compensation between J0 and —JQ—1 [for 
Jo=l/2, 3/2, • • -min( |X| , |At|) —1] occurs with no 
change of parity index. The J0 values are again defined 
as those for which we have a nonsense-nonsense 
transition. 


